Abstract

ABSTRACTWe study Poisson confidence procedures that potentially lead to short confidence intervals, investigating the class of all minimal cardinality procedures. We consider how length minimization should be properly defined, and show that Casella and Robert's (1989) criterion for comparing Poisson confidence procedures leads to a contradiction. We provide an alternative criterion for comparing length performance, identify the unique length optimal minimal cardinality procedure by this criterion, and propose a modification that eliminates an important drawback it possesses. We focus on procedures whose coverage never falls below the nominal level and discuss the case in which the nominal level represents mean coverage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.