Abstract
Compared to conventional methods, single molecule, real-time (SMRT) DNA sequencing exhibits longer read lengths than conventional methods, less GC per cent bias, and the ability to read DNA base modifications. However, reading DNA sequence from sub-ng quantities is impractical due to inefficient delivery of DNA molecules into the confines of zero-mode waveguides, zeptolitre optical cavities in which DNA sequencing proceeds. Here we show that the efficiency of voltage-induced DNA loading into waveguides equipped with nanopores at their floors is five orders of magnitude greater than existing methods. In addition, we find that DNA loading is nearly length-independent, unlike diffusive loading, which is biased towards shorter fragments. We demonstrate here loading and proof-of-principle four-colour sequence readout of a polymerase-bound 20,000 bp long DNA template within seconds from a sub-ng input quantity, a step towards low-input DNA sequencing and mammalian epigenomic mapping of native DNA samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.