Abstract

We study generalizations of Chiswell’s theorem that 0-hyperbolic Lyndon length functions on groups always arise as based length functions of the group acting isometrically on a tree. We produce counter-examples to show that this Theorem fails if one replaces 0-hyperbolicity with δ-hyperbolicity. We then propose a set of axioms for the length function on a finitely generated group that ensures the function is bi-Lipschitz equivalent to a (or any) length function of the group acting on its Cayley graph with respect to some finite generating set.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.