Abstract

In this paper we describe the progress we have made in our simultaneous length measurement and the femtosecond comb interferometric spectroscopy in a conventional arrangement with a moving mirror. Scanning and detection over an interval longer than the distance between two consecutive pulses of the frequency comb allow for a spectral resolution of the individual frequency modes of the comb. Precise knowledge of comb mode frequency leads to a precise estimation of the spectral characteristics of inspected phenomena. Using the pulse train of the frequency comb allows for measurement with highly unbalanced lengths of interferometer arms, i.e. an absolute long distance measurement. Further, we present a non-contact (double sided) method of measurement of the length/thickness of plane-parallel objects (gauge blocks, glass samples) by combining the fs comb (white light) with single frequency laser interferometry. The position of a fringe packet is evaluated by estimating the stationary phase position for any wavelength in the spectral band used. The repeatability of this position estimation is a few nanometres regardless of whether dispersion of the arms is compensated (transform limited fringe packet ∼10 fringes FWHM) or highly different (fringe packet stretched to >200 fringes FWHM). The measurement of steel gauge block by this method was compared with the standard method, and deviation (+13 ± 12) nm for gauge blocks (2 to 100) mm was found. The measurement of low reflecting ceramic gauges or clear glass samples was also tested. In the case of glass, it becomes possible to measure simultaneously both the thickness and the refractive index (and dispersion) of flat samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.