Abstract

Cathode interfacial material (CIM) is critical to improving the power conversion efficiency (PCE) and long‐term stability of an organic photovoltaic cell that utilizes a high work function cathode. In this contribution, a novel CIM is reported through an effective and yet simple combination of triarylphosphine oxide with a 1,10‐phenanthrolinyl unit. The resulting CIM possesses easy synthesis and purification, a high T g of 116 °C and attractive electron‐transport properties. The characterization of photovoltaic devices involving Ag or Al cathodes shows that this thermally deposited interlayer can considerably improve the PCE, due largely to a simultaneous increase in V oc and FF relative to the reference devices without a CIM. Notably, a PCE of 7.51% is obtained for the CIM/Ag device utilizing the active layer PTB7:PC71BM, which far exceeds that of the reference Ag device and compares well to that of the Ca/Al device. The PCE is further increased to 8.56% for the CIM/Al device (with J sc = 16.81 mA cm−2, V oc = 0.75 V, FF = 0.68). Ultraviolet photoemission spectroscopy studies reveal that this promising CIM can significantly lower the work function of the Ag metal as well as ITO and HOPG, and facilitate electron extraction in OPV devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.