Abstract

BackgroundL. tarentolae, the lizard-infecting species of Old World geckos, has been classified as non-pathogenic to man. While it has been demonstrated that L. tarentolae is capable of infecting human phagocytic cells and to differentiate into amastigote-like forms, there is no clear evidence for its efficient replication within macrophages. Here we provide first evidence for L. tarentolae ancient DNA sequences from bone marrow and intestines of a 300yo adult male.MethodsWe identified molecular signatures of Leishmania tarentolae, the lizard-infecting species of Old World geckos, in hard and soft tissue biopsies from a Brazilian mummy (A74) uncovered in Itacambira (Brazil) and dating to the Colonial Period (end of 18th/beginning of the 19th century).ResultsOur results imply that efficient replication of the parasite occurred within human macrophage and to lead to a systemic spread and visceralization in this individual. The ancient sequences show a 100% similarity with those of isolated L. tarentolae parasites grown on artificial nutrient media and a 99% similarity with two modern sequences isolated from reptiles.ConclusionsDe facto, our findings re-open the debate about the potential survival of ancient L. tarentolae strain within human macrophage and its ability to spread systemically. They also raise ecological issues since it is unknown whether this parasite circulates in the reptilian reservoir in modern day Brazil or not. Investigations on fossil fauna and arthropods are needed to shed light on the interactions between saurian Leishmania and lizards in Brazil’s remote and recent past.

Highlights

  • L. tarentolae, the lizard-infecting species of Old World geckos, has been classified as non-pathogenic to man

  • Different forms of the disease can be encountered in various areas of the globe and range from self-healing cutaneous lesions (CL) to mucocutaneous (MCL) and severe health-threatening visceral infections (VL) [2]

  • While it has been demonstrated that L. tarentolae is capable of infecting human phagocytic cells and to differentiate into amastigote-like forms, there is no clear evidence for its efficient replication within macrophages [26,27]

Read more

Summary

Introduction

L. tarentolae, the lizard-infecting species of Old World geckos, has been classified as non-pathogenic to man. While it has been demonstrated that L. tarentolae is capable of infecting human phagocytic cells and to differentiate into amastigote-like forms, there is no clear evidence for its efficient replication within macrophages. Up till the present day, at least 21 species belonging to the genus Leishmania have been classified as human pathogens [3,4] but the global number of species responsible. The reptilian species were, classified in a separate genus named Sauroleishmania [5,6,11]. The molecular data, whole-genome sequencing data included, showed that the genus Leishmania is monophyletic group with three distinct subgenera Leishmania (Leishmania), Leishmania (Viannia), and Leishmania (Sauroleishmania) [3,12].

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call