Abstract

In nature the prevalence of Leishmania infection in whole sand fly populations can be very low (<0.1%), even in areas of endemicity and high transmission. It has long since been assumed that the protozoan parasite Leishmania can manipulate the feeding behavior of its sand fly vector, thus enhancing transmission efficiency, but neither the way in which it does so nor the mechanisms behind such manipulation have been described. A key feature of parasite development in the sand fly gut is the secretion of a gel-like plug composed of filamentous proteophosphoglycan. Using both experimental and natural parasite–sand fly combinations we show that secretion of this gel is accompanied by differentiation of mammal-infective transmission stages. Further, Leishmania infection specifically causes an increase in vector biting persistence on mice (re-feeding after interruption) and also promotes feeding on multiple hosts. Both of these aspects of vector behavior were found to be finely tuned to the differentiation of parasite transmission stages in the sand fly gut. By experimentally accelerating the development rate of the parasites, we showed that Leishmania can optimize its transmission by inducing increased biting persistence only when infective stages are present. This crucial adaptive manipulation resulted in enhanced infection of experimental hosts. Thus, we demonstrate that behavioral manipulation of the infected vector provides a selective advantage to the parasite by significantly increasing transmission.

Highlights

  • Parasites exhibit myriad adaptations to ensure their survival and transmission from host to host

  • Recent work on transmission of leishmaniasis demonstrated that metacyclic promastigotes of Leishmania mexicana are regurgitated from the midgut of the sand fly vector accompanied by a viscous gel-like material of parasite origin [7]

  • The results showed that both L. mexicana– and L. infantum–infected flies displayed a positive correlation between persistence and number of metacyclic promastigotes/fly (Figure 3A)

Read more

Summary

Introduction

Parasites exhibit myriad adaptations to ensure their survival and transmission from host to host. Recent work on transmission of leishmaniasis demonstrated that metacyclic promastigotes of Leishmania mexicana are regurgitated from the midgut of the sand fly vector accompanied by a viscous gel-like material of parasite origin [7]. This promastigote secretory gel (PSG) is a potent parasite virulence factor, and, together with sand fly saliva, significantly enhances cutaneous infections when co-delivered into the skin of the mammalian host [7,8].

Author Summary
Conclusions
Findings
Materials and Methods
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.