Abstract

CD8+ T cells are an important regiment of adaptive immunity that play a decisive role in elimination of many species of Leishmania parasite from the host. In visceral leishmaniasis, caused by L. donovani, the loss of CD8+ T cells function has been found associated with augmented pathogenesis. The factors determining CD8+ T cells activation and function against Leishmania antigens are largely unknown. In this study, we investigated the role of an immune inhibitory receptor, CD300a, on the effector properties of dendritic cells and CD8+ T cells. We observed that the Leishmania regulates the effectors function of CD8+ T cells by increasing CD300a expression on CD11c+ dendritic cells. The abrogation of CD300a signaling in parasites infected animals induced CD8+ T cell abilities to produce IFN-γ, TNF-α and also helped them to acquire desired multifunctionality. The CD300a receptor blocking also enhanced the number of CD8+ T cells memory phenotypes at the early days of infection, suggesting its potential beneficial role in vaccine induced immunity. We also observed significantly enhanced levels of pro-inflammatory cytokines in the spleen of CD300a blocked infected animals with concomitant reduced spleen parasite load. Additionally, the abrogation of CD300a signals in the infected animals helped in establishing Th1 type protective humoral immunity with significantly elevated levels of IgG2a antibodies. Since CD8+ T cells are an important determinant of vaccine induced immunity against leishmaniasis, the findings corroborate the potential of CD300a in vaccine induced immunity and thus require further attention.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call