Abstract

To initiate an antileishmanial adaptive immune response, dendritic cells (DCs) must carry Leishmania antigens from peripheral tissues to local draining lymph nodes. However, the migratory capacity of DCs is largely compromised during Leishmania donovani infection. The molecular mechanism underlying this defective DC migration is not yet fully understood. Here, we demonstrate that L. donovani infection impaired the lymph node homing ability of DCs by decreasing C-type lectin receptor 2 (CLEC-2) expression. L. donovani exerted this inhibitory effect by inducing transforming growth factor-β (TGF-β) secretion from DCs. Indeed, TGF-β produced in this manner inhibited nuclear factor-κB (NF-κB)-mediated CLEC-2 expression on DCs by activating c-Src. Notably, suppression of c-Src expression significantly improved the arrival of DCs in draining lymph nodes by preventing L. donovani-induced CLEC-2 downregulation on DCs. These findings reveal a unique mechanism by which L. donovani inhibits DC migration to lymph nodes and suggest a key role for TGF-β, c-Src, and CLEC-2 in regulating this process. IMPORTANCE Dendritic cells (DCs) play a key role in initiating T cell-mediated protective immunity against visceral leishmaniasis (VL), the second most lethal parasitic disease in the world. However, the T cell-inducing ability of DCs critically depends on the extent of DC migration to regional lymph nodes. Notably, the migration of DCs is reported to be impaired during VL. The cause of this impaired DC migration, however, remains ill-defined. Here, we provide the first evidence that L. donovani, the causative agent of VL, attenuates the lymph node homing capacity of DCs by decreasing C-type lectin receptor 2 (CLEC-2) expression on DCs. Additionally, we have demonstrated how L. donovani mediates this inhibitory effect. Overall, our work has revealed a unique mechanism underlying L. donovani-induced impairment of DC migration and suggests a potential strategy to improve antileishmanial T cell activity by increasing DC arrival in lymph nodes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.