Abstract
Volatile drops deposited on a hot solid can levitate on a cushion of their own vapor, without contacting the surface. We propose to understand the onset of this so-called Leidenfrost effect through an analogy to nonequilibrium systems exhibiting a directed percolation phase transition. When performing impacts on superheated solids, we observe a regime of spatiotemporal intermittency in which localized wet patches coexist with dry regions on the substrate. We report a critical surface temperature, which marks the upper bound of a large range of temperatures in which levitation and contact coexist. In this range, with decreasing temperature, the equilibrium wet fraction increases continuously from zero to one. Also, the statistical properties of the spatiotemporally intermittent regime are in agreement with that of the directed percolation universality class. This analogy allows us to redefine the Leidenfrost temperature and shed light on the physical mechanisms governing the transition to the Leidenfrost state.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.