Abstract

Reconsidering the materials used in construction is crucial within the building industry, particularly in the context of sustainability. Recently, there has been a growing interest in exploring novel materials, with fibre-reinforced composites emerging as a prominent choice with biocomposites standing out as promising for advancing sustainability goals. This paper introduces the development of LeichtPRO-Profiles, continuous linear biocomposite profiles fabricated using the pultrusion technology. A primary focus is the application of these profiles in structural systems as load-bearing elements, emphasising the significance of understanding their mechanical properties. Specifically, an original application involves active-bending structures, necessitating a focus on the material’s bending behaviour. This study discusses the methods employed in developing the pultruded biocomposite profiles which are made from natural flax fibres and an optimised matrix formulation based on a plant-based resin system. This research also outlines the optimisation of the fabrication process of these biocomposite profiles using bio-based ingredients. The results demonstrate the material’s mechanical capabilities through extensive experiments and mechanical tests, revealing a compression strength of 31.2 kN and a flexural strength of 300 MPa, with a bending radius of up to 2.4 m, indicating its suitability for structural applications. Concepts of applications in several systems across different scales and contexts are also presented. The versatility and adaptability of this product make it suitable for a wide range of applications spanning various scales and thematic contexts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.