Abstract

The derivatives of Nash functions are Nash functions which are derived algebraically from their minimal polynomial equations. In this paper we show that, for any non-Nash analytic function, it is impossible to derive its derivatives algebraically, i.e., by using linearity and Leibniz rule finite times. In fact we prove the impossibility of such kind of algebraic computations, algebraically by using Kähler differentials. Then the notion of Leibniz complexity of a Nash function is introduced in this paper, as a computational complexity on its derivative, by the minimal number of usages of Leibniz rules to compute the total differential algebraically. We provide general observations and upper estimates on Leibniz complexity of Nash functions, related to the binary expansions, the addition chain complexity, the non-scalar complexity and the complexity of Nash functions in the sense of Ramanakoraisina.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.