Abstract
ABSTRACTWe construct and study the map from Leibniz homology HL∗(𝔥) of an abelian extension 𝔥 of a simple real Lie algebra 𝔤 to the Hochschild homology HH∗−1(U(𝔥)) of the universal envelopping algebra U(𝔥). To calculate some homology groups, we use the Hochschild-Serre spectral sequences and Pirashvili spectral sequences. The result shows what part of the non-commutative Leibniz theory is detected by classical Hochschild homology, which is of interest today in string theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.