Abstract

Nodulation is an energy-expensive behavior driven by legumes by providing carbon sources to bacteroids and obtaining nitrogen sources in return. The energy sensor sucrose nonfermenting 1-related protein kinase 1 (SnRK1) is the hub of energy regulation in eukaryotes. However, the molecular mechanism by which SnRK1 coordinates the allocation of energy and substances during symbiotic nitrogen fixation (SNF) remains unknown. In this study, we identified the novel legume-specific SnRK1α4, a member of the SnRK1 family that positively regulates SNF. Phenotypic analysis showed that nodule size and nitrogenase activity increased in SnRK1α4-overexpressing plants and decreased significantly in snrk1α4 mutants. We demonstrated that a key upstream kinase involved in nodulation, Does Not Make Infection 2 (DMI2), can phosphorylate SnRK1α4 at Thr175 to cause its activation. Further evidence clarified that SnRK1α4 phosphorylates the malate dehydrogenases MDH1/2 to promote malate production in the cytoplasm, supplying carbon sources to bacteroids. Therefore, our findings reveal an essential role of the DMI2–SnRK1α4–MDH pathway in supplying carbon sources to bacteroids for SNF and provide a new module for constructing cereal crops with SNF.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.