Abstract

ABSTRACT Inclusion of legumes in the cropping system has been known since times immemorial. Legume is a natural mini-nitrogen manufacturing factory in the field and the farmers by growing these crops can play a vital role in increasing indigenous nitrogen production. Legume help in solubilizing insoluble P in soil, improving the soil physical environment, increasing soil microbial activity, and restoring organic matter, and also has smothering effect on weed. The carryover of N derived from legume grown, either in crop sequence or in intercropping system for succeeding crops, is also important. In a country like India, where the average consumption of plant nutrients from chemical fertilizers on national basis is very low, the scope for exploiting direct and residual fertility due to legumes has obviously a great potential. This article deals with the beneficial effect of important legumes on increasing productivity and nutrient use-efficiency in various systems. Sorghum, pearl millet, maize, and castor are mainstay in dry lands and marginal and sub-marginal lands. Sorghum yield increased when sown after cowpea, green gram, and groundnut. Grain legumes like groundnut or cowpea provide an equivalent to 60 kg N ha on the subsequent crop of pearl millet. Various studies have shown that among legume/cereal intercropping system, the combination of maize/pigeon pea is considered to be highly suitable with a minimum competition for nutrients, while legume/legume intercropping system, pigeon pea/groundnut system is the most efficient one in terms of resource use-efficiency. In alley cropping system, Leucaena leucocephala (Subabul) prunings provide N to the extent of 75 kg, which benefits the intercrop castor and sorghum. Nitrogen economy through intercropped legume is still a researchable issue because the key point for leguminous crop grown in intercropping system is the problem of nodulation. Incorporation of whole plant of summer green gram/black gram into soil (after picking pods) before transplanting rice resulted in the economizing (40–60 kg N ha−1, 30 kg P2O5, and 15 kg K2O per ha) of rice in rice-wheat system. Similarly, 6–8 weeks old green manure crop of sunhemp or dhaincha accumulates about 3–4 t ha−1 dry matter and 100–120 kg N ha−1 which, when incorporated in situ, supplements up to 50% of the total N requirement of rice. Legumes with indeterminate growth are more efficient in N2 fixation than determinate types. Fodder legumes in general are more potent in increasing the productivity of succeeding cereals. The carryover of N for succeeding crops may be 60–120 kg in berseem, 75 kg in Indian clover, 75 kg in cluster bean, 35–60 kg in fodder cowpea, 68 kg in chickpea, 55 kg in black gram, 54–58 kg in groundnut, 50–51 kg in soybean, 50 kg in Lathyrus, and 36–42 kg per ha in pigeon pea. Direct and residual effect of partially acidulated material and mixture of rock phosphate + single superphosphate were observed to be better when these were applied to green gram in winter season than to rice in rainy season simply because of legume effect.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call