Abstract

AimsChronic cerebral hypoperfusion (CCH) is a state of chronic cerebral blood flow reduction, and it is the main cause of cognitive impairment and neurodegenerative diseases. The abnormal upregulation of legumain, a lysosomal cysteine protease, trigger synaptic plasticity impairment and neuroinflammation, which are involved in the underlying pathophysiology of CCH. At present, few studies have reported the role of legumain in cognitive impairment caused by CCH. In our study, we aimed to investigate the involvement of legumain knockout in cognitive function and neuroinflammation in a CCH mouse model. Main methodsIn this study, right unilateral common carotid artery occlusion (rUCCAO) was used to simulate the pathological state of cerebral ischemic injury. Various behavioural tests were executed to assess cognitive performance. In vivo electrophysiological recordings were used to measure synaptic functions. Western blotting, Golgi staining, haematoxylin/eosin staining, and immunofluorescence assays were conducted to examine pathological changes and molecular mechanisms. Key findingsThe data showed that the level of legumain was significantly increased in the hippocampus of mice subjected to rUCCAO. Legumain knockout significantly improved cognitive function and synaptic plasticity induced by rUCCAO, suggesting that legumain knockout-regulation effectively protected against CCH-induced behavioural dysfunctions. Moreover, legumain knockout suppressed rUCCAO-induced microglial activation, reduced the abnormal expression of inflammatory cytokines and the inflammasome complex, and impeded the activation of P65 and pyroptosis. SignificanceThese findings suggest that legumain is an effective regulator of CCH, and may be an ideal target for the development of cerebral ischemia treatments in the future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.