Abstract

ABSTRACTConsiderable attention has been given to the spring-like behaviour of stretching and recoiling tendons, and how this can reduce the work demanded from muscle for a given loss–return cycling of mechanical energy during high-speed locomotion. However, even completely isometric muscle–tendon units have the potential to act as tension struts, forming links in linkages that avoid the demand for mechanical work-cycling in the first place. Here, forelimb and hindlimb structures and geometries of quadrupeds are considered in terms of linkages that avoid mechanical work at the level of both the whole limb and the individual muscles. The scapula, isometric serratus muscles and forelimb can be viewed as a modified Roberts' straight-line mechanism that supports an approximately horizontal path of the body with vertically orientated forces, resulting in low work demand at the level of both limb and muscle. Modelled isometric triceps brachii inserting to the olecranon form part of a series of four-bar linkages (forelimb) and isometric biceps femoris cranial, rectus femoris and tensor fascia latae form part of a series of six-bar linkages (hindlimb), in both cases potentially resulting in straight-line horizontal motion, generating appropriate moments about shoulder and hip to maintain vertical ground reaction forces and again low mechanical work demand from the limb. Analysing part of the complexity of animal limb structure as linkages that avoid work at the level of both the whole limb and the supporting muscles suggests a new paradigm with which to appreciate the role of isometric muscle–tendon units and multiple muscle origins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call