Abstract

From 1999 through 2005 in Alcoi, Spain, incidence of legionellosis was continually high. Over the next 4 years, incidence was lower, but an increase in July 2009 led health authorities to declare an epidemic outbreak. A molecular epidemiology investigation showed that the allelic profiles for all Legionella pneumophila samples from the 2009 outbreak patients were the same, thus pointing to a common genetic origin for their infections, and that they were identical to that of the organism that had caused the previous outbreaks. Spatial-temporal and sequence-based typing analyses indicated a milling machine used in street asphalt repaving and its water tank as the most likely sources. As opposed to other machines used for street cleaning, the responsible milling machine used water from a natural spring. When the operation of this machine was prohibited and cleaning measures were adopted, infections ceased.

Highlights

  • From 1999 through 2005 in Alcoi, Spain, incidence of legionellosis was continually high

  • All except 1 recovered. (The patient who did not recover had severe signs and symptoms and subsequently died.) The main signs and symptoms were fever (100% incidence), pneumonia (100%), headache (27.3%), myalgia (27.3%), diarrhea and/or vomiting (18.2%), and confusion (45.5%)

  • Spatialtemporal analysis of outbreak cases pointed to a milling machine used in street asphalt repaving and its water tank as the most likely source of infection

Read more

Summary

Introduction

From 1999 through 2005 in Alcoi, Spain, incidence of legionellosis was continually high. Legionella pneumophila [1] is a gram-negative bacterium identified as the causative agent of an outbreak of pneumonia that occurred in a Philadelphia hotel during a Legionnaires’ convention in 1977 [2]. Molecular epidemiologic analyses of L. pneumophila usually compare sequence-based typing patterns from bacterial cultures derived from putative environmental sources with L. pneumophila cultures from patients’ sputum samples. This approach consists of amplifying and sequencing internal fragments of 7 loci and assigns a number to the different alleles derived from each locus [17,18]. The efficiency of sequence-based typing of L. pneumophila can be improved by direct amplification and sequencing of DNA extracted from uncultured respiratory samples [22]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.