Abstract

In contrast to the spatial Bell's inequalities which probe entanglement between spatially separated systems, the Leggett–Garg inequalities test the correlations of a single system measured at different times. Violation of a genuine Leggett–Garg test implies either the absence of a realistic description of the system or the impossibility of measuring the system without disturbing it. Quantum mechanics violates the inequalities on both accounts and the original motivation for these inequalities was as a test for quantum coherence in macroscopic systems. The last few years has seen a number of experimental tests and violations of these inequalities in a variety of microscopic systems such as superconducting qubits, nuclear spins, and photons. In this article, we provide an introduction to the Leggett–Garg inequalities and review these latest experimental developments. We discuss important topics such as the significance of the non-invasive measurability assumption, the clumsiness loophole, and the role of weak measurements. Also covered are some recent theoretical proposals for the application of Leggett–Garg inequalities in quantum transport, quantum biology and nano-mechanical systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.