Abstract

We study a class of Legendrian surfaces in contact five-folds by encoding their wavefronts via planar combinatorial structures. We refer to these surfaces as Legendrian weaves, and to the combinatorial objects as N-graphs. First, we develop a diagrammatic calculus which encodes contact geometric operations on Legendrian surfaces as multi-colored planar combinatorics. Second, we present an algebraic-geometric characterization for the moduli space of microlocal constructible sheaves associated to these Legendrian surfaces. Then we use these N-graphs and the flag moduli description of these Legendrian invariants for several new applications to contact and symplectic topology. Applications include showing that any finite group can be realized as a subfactor of a 3-dimensional Lagrangian concordance monoid for a Legendrian surface in the 1-jet space of the two-sphere, a new construction of infinitely many exact Lagrangian fillings for Legendrian links in the standard contact three-sphere, and performing rational point counts over finite fields that distinguish Legendrian surfaces in the standard five-dimensional Darboux chart. In addition, the manuscript develops the notion of Legendrian mutation, studying microlocal monodromies and their transformations. The appendix illustrates the connection between our N-graph calculus for Lagrangian cobordisms and Elias-Khovanov-Williamson's Soergel Calculus.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.