Abstract

In this paper, we present the result of our study on the application of artificial neural networks (ANNs) for adaptive channel equalization in a digital communication system using 4-quadrature amplitude modulation (QAM) signal constellation. We propose a novel single-layer Legendre functional-link ANN (L-FLANN) by using Legendre polynomials to expand the input space into a higher dimension. A performance comparison was carried out with extensive computer simulations between different ANN-based equalizers, such as, radial basis function (RBF), Chebyshev neural network (ChNN) and the proposed L-FLANN along with a linear least mean square (LMS) finite impulse response (FIR) adaptive filter-based equalizer. The performance indicators include the mean square error (MSE), bit error rate (BER), and computational complexities of the different architectures as well as the eye patterns of the various equalizers. It is shown that the L-FLANN exhibited excellent results in terms of the MSE, BER and the computational complexity of the networks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.