Abstract
In this paper, based on the constructed Legendre wavelets operational matrix of integration of fractional order, a numerical method for solving linear and nonlinear fractional integro-differential equations is proposed. By using the operational matrix, the linear and nonlinear fractional integro-differential equations are reduced to a system of algebraic equations which are solved through known numerical algorithms. The upper bound of the error of the Legendre wavelets expansion is investigated in Theorem 5.1. Finally, four numerical examples are shown to illustrate the efficiency and accuracy of the approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.