Abstract

Abstract We investigate convergence behavior of a spectral element method based on Legendre polynomial shape functions solving linear elasticity equations for a range of Poisson's ratios of a material. We document uniform convergence rates independent of Poisson's ratio for a wide class of problems with both straight and curved elements in two and three dimensions, demonstrating locking-free properties of the spectral element method with nearly incompressible materials. We investigate computational efficiency of the current method without a preconditioner and with a simple mass-matrix preconditioner, however no attempt to optimize a choice of a preconditioner was made.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.