Abstract

In this work, we develop a Legendre spectral element method (LSEM) for solving the stochastic nonlinear system of advection–reaction–diffusion models. The used basis functions are based on a class of Legendre functions such that their mass and diffuse matrices are tridiagonal and diagonal, respectively. The temporal variable is discretized by a Crank–Nicolson finite-difference formulation. In the stochastic direction, we also employ a random variable W based on the Q-Wiener process. We inspect the rate of convergence and the unconditional stability for the achieved semi-discrete formulation. Then, the Legendre spectral element technique is used to obtain a full-discrete scheme. The error estimation of the proposed numerical scheme is substantiated based upon the energy method. The numerical results confirm the theoretical analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.