Abstract
AbstractRecently, it is found that telegraph equation is more suitable than ordinary diffusion equation in modeling reaction diffusion for such branches of sciences. In this article a numerical method for solving the one‐dimensional hyperbolic telegraph equation is presented. The method is based upon Legendre multiwavelet approximations. The properties of Legendre multiwavelet are first presented. These properties together with Galerkin method are then utilized to reduce the telegraph equation to the solution of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the technique. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Numerical Methods for Partial Differential Equations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.