Abstract
A Legendre–Gauss–Lobatto spectral collocation method is introduced for the numerical solutions of a class of nonlinear delay differential equations. An efficient algorithm is designed for the single‐step scheme and applied to the multiple‐domain case. As a theoretical result, we obtain a general convergence theorem for the single‐step case. Numerical results show that the suggested algorithm enjoys high‐order accuracy both in time and in the delayed argument and can be implemented in a robust and efficient manner. Copyright © 2013 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.