Abstract

<p>Herein, we provide an efficient spectral Galerkin algorithm, according to a special type of shifted Legendre basis for finding a semi-analytic solution to the Liouville-Caputo fractional boundary value problem. The algorithm’s main goal is to transform the fractional differential problem into a linear system with efficiently invertible, well-structured matrices. The convergence rates of the algorithm are carefully obtained as well as the error bound.</p>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.