Abstract
Legendre forms are used in the literature for second-order sufficient optimality conditions of optimization problems in (reflexive) Banach spaces. We show that if a Legendre form exists on a reflexive Banach space, then this space is already isomorphic to a Hilbert space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.