Abstract
Herbicides (HBCs) are extensively used in modern agriculture. However, their potential negative impacts on environmental media have emerged as a significant environmental concern. In this study, we employed positive matrix factorization (PMF) to identify the potential sources of HBCs. Furthermore, we utilized a multi-matrix ecological risk model to assess the risks associated with HBCs in both surface water and groundwater in the black soil region of Northeast China. The findings revealed that the levels of ∑15HBCs in surface water and groundwater ranged from 585.84 to 6466.96 ng/L and 4.80 to 11,774.64 ng/L, respectively. The PMF results indicated that surface runoff and erosion accounted for 50% of the total HBCs in water, serving as the primary sources. All tested HBCs exhibited acute risk values within acceptable levels. The risk index for the ∑15HBCs was categorized as “moderate risk” in 31% of the surface waters and 13% of the groundwaters. However, 4% of the groundwater sampling sites reached the “high risk” level. The chronic risk quotient of ∑15HBCs in surface water and groundwater was 92% and 62% at the “high risk” level, respectively. Interestingly, non-carcinogenic HBCs contributed more significantly to the ecotoxicology of the aquatic system than carcinogenic HBCs. This study provides comprehensive information on the legacy of HBCs in water bodies and emphasizes the potential risks posed by HBCs to aquatic systems. The results obtained from this study could help relevant management authorities in developing and implementing effective regulations to mitigate the ecological and environmental risks associated with HBCs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.