Abstract

The logical separation of the data plane and the control plane of the network device conceptually defined by software-defined networking (SDN) creates many opportunities to create smart networking with better efficiency for network management and operation. SDN implementation over telecommunications (Telcos) and Internet service provider (ISP) networks is a challenging issue due to the lack of a high maturity level of SDN-based standards and several other critical factors that are considered during the real-time migration of existing legacy IPv4 networks. Different migration approaches have been studied; however, none of them seem to be close to realizing implementation. This paper implements the SDN-IP and Open Network Operating System (ONOS) SDN controller to migrate legacy IPv4 networks to multi-domain software-defined IPv6 (SoDIP6) networks and experimentally evaluate the viability of joint network migration in the ISP networks. We present results using extensive simulations for the suitable placement of the master ONOS controller during network migration by considering minimum control path latency using optimal path routing and the breadth first router replacement (BFR) technique. Our empirical analysis and evaluations show that the identification of the median router to attach the master controller and router migration planning using BFR give better results for carrier-grade legacy networks’ migration to SoDIP6 networks.

Highlights

  • Operability, maintainability, and network addressing issues in the legacy IPv4 networks are being investigated with the emergence of next-generation networking paradigms like software-defined networking (SDN) and Internet Protocol Version 6 (IPv6) [1]

  • AS3 in Figure 2a is a legacy IPv4 network, where we suppose that services are provided to customers via multiple customer gateways (CGs) attached with AS3, and gateway router GR3 can be considered as the FG

  • The controller placement problem is the concern of SDN only, we considered IPv6 addressing and routing in order to encourage service providers to engage in effective joint migration planning and implementations to achieve the benefits of software-defined IPv6 (SoDIP6) networks

Read more

Summary

Introduction

Operability, maintainability, and network addressing issues in the legacy IPv4 networks are being investigated with the emergence of next-generation networking paradigms like software-defined networking (SDN) and Internet Protocol Version 6 (IPv6) [1]. IPv6 and the SDN are not backward-compatible, leading to complexities and challenges in the real-time migration of the legacy IPv4 networking system, which is currently operating world-wide. Network migration is inevitable for service providers, though there have been several challenges with migration from the technical, financial, as well as business perspectives [2]. The higher costs of network migration to replace or upgrade network devices, transformations in software systems and related services, along with a lack of skilled human resources to operate and maintain the newer networking systems are becoming the major hurdles of technology migration in service provider networks.

Objectives
Methods
Findings
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call