Abstract
Abstract We compare dynamical mass estimates based on spatially extended stellar and ionized gas kinematics (M dyn,* and M dyn,eml, respectively) of 157 star-forming galaxies at 0.6 ≤ z < 1. Compared with z ∼ 0, these galaxies have enhanced star formation rates, with stellar feedback likely affecting the dynamics of the gas. We use LEGA-C DR3, the highest-redshift data set that provides sufficiently deep measurements of a K s -band limited sample. For M dyn,*, we use Jeans anisotropic multi-Gaussian expansion models. For M dyn,eml, we first fit a custom model of a rotating exponential disk with uniform dispersion, whose light is projected through a slit and corrected for beam smearing. We then apply an asymmetric drift correction based on assumptions common in the literature to the fitted kinematic components to obtain the circular velocity, assuming hydrostatic equilibrium. Within the half-light radius, M dyn,eml is on average lower than M dyn,*, with a mean offset of –0.15 ± 0.016 dex and galaxy-to-galaxy scatter of 0.19 dex, reflecting the combined random uncertainty. While data of higher spatial resolution are needed to understand this small offset, it supports the assumption that the galaxy-wide ionized gas kinematics do not predominantly originate from disruptive events such as star formation–driven outflows. However, a similar agreement can be obtained without modeling from the integrated emission line dispersions for axis ratios q < 0.8. This suggests that our current understanding of gas kinematics is not sufficient to efficiently apply asymmetric drift corrections to improve dynamical mass estimates compared with observations lacking the signal-to-noise ratio required for spatially extended dynamics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.