Abstract

BackgroundNike ZoomX Vaporfly (NVF) improves running economy and performance. The biomechanical mechanisms of these shoes are not fully understood, although thicker midsoles and carbon fiber plates are considered to play an important role in the spring-like leg characteristics during running. Leg stiffness (kleg) in the spring-mass model has been commonly used to investigate spring-like running mechanics during running. Research questionDoes kleg during running differ between NVF and traditional (TRAD) shoes? MethodsEighteen male habitual forefoot and/or midfoot strike runners ran on a treadmill at 20 km/h with NVF and TRAD shoes, respectively. kleg, vertical oscillation of the center of mass (∆CoM), spatiotemporal parameters, and mechanical loading were determined. Resultskleg was 4.8% lower in the NVF shoe condition than in the TRAD condition, although no significant difference was observed. ∆CoM was not significantly different between shoe conditions. Spatiotemporal parameters and mechanical loading were also not significantly different between shoe conditions. SignificanceThe NVF shoe is well known as improving the running economy and running performance for the cause by characteristics of better spring function. Contrary to expectation, kleg and other parameters were not significantly different during running in the NVF compared to TRAD shoe at 20 km/h. These findings indicate that well-trained runners’ spring-like running mechanics would not alter even if wearing the NVF shoes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.