Abstract
Five legs of a fixed stick insect walked on a double treadwheel. The left hindleg (L3) walked on a motor-driven belt. When the belt was slower than the wheels L3 made less steps than the other legs and when the belt was faster than the wheels it made more steps than the other legs. In the case of slowlier stepping of the "belt-leg", the motor neurons of the retractor coxae muscle of this leg showed a high activity when the leg was pulled backwards by the belt. This activity was modulated in the step rhythm of the "wheel-legs". When all legs showed the same stepping frequency (1:1-coordination) the protraction duration of L3 was almost independent of step-period, as well as the lag between onset of protraction of L3 and that of L2. In some cases only L3 could be made to step on the belt even when all other legs did not walk.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.