Abstract
AbstractIn order to improve the dynamic motion ability of the biped robot, a joint with high torque output and high backdrivability is required. In this paper, a new leg mechanism using a joint with continuously variable reduction ratio inspired by human joint structure is proposed. This mechanism possesses high actuation capability and high impact resistance ability. Based on the characteristics of jumping motion, the parameters of the joint are optimized to increase the jumping height of the robot. A contrast simulation was implemented on a one-legged model to show the advantages of the variable reduction ratio joint over fixed reduction ratio joint. The newly designed joint can increase the jumping height of the robot by 21% comparing with a model without the mechanism. A prototype of one-legged robot using the designed joint with continuously variable reduction ratio has been developed. Vertical jump experiment on the prototype is realized with a height of 42 cm.KeywordsMechanical designVariable reduction ratio jointJumping robot
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.