Abstract

Leg glucose uptake (LGU) during submaximal (50% maximal O2 uptake) and maximal dynamic exercise (97%) has been quantified from the product of the leg blood flow and the arterial minus femoral venous glucose concentration. Muscle biopsies were also obtained. During 15 min of submaximal exercise the mean LGU values ranged from 1.07 to 1.25 mmol/min, which demonstrates that LGU was stable under this condition. In contrast, during maximal exercise LGU increased continuously, reaching 2.38 +/- 0.22, 2.95 +/- 0.32, and 3.82 +/- 0.34 mmol/min after 2, 4, and 5.2 min (fatigue), respectively. The mean LGU was negatively related to the mean muscle phosphocreatine content (r = -1.00;P less than 0.01). Intracellular glucose-6-phosphate (G-6-P) and glucose were very low at rest and did not change significantly during submaximal exercise (P greater than 0.05). However, at fatigue G-6-P and glucose increased substantially and were both 8.5 mmol/kg dry muscle (P less than 0.001). These findings demonstrate that during heavy exercise glucose accumulates in the cell probably due to hexokinase inhibition by G-6-P, and thus the rate of glucose utilization appears to be lower than the rate of glucose uptake. It is suggested that 1) LGU during short-term exercise is dependent on the energy state of the muscle and 2) LGU is equal to leg glucose utilization during submaximal exercise but is in excess of utilization during heavy exercise.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call