Abstract

A dragonfly larva migrates from the water to the shore, perches on a plant stem and grasps it with strongly flexed legs. Adult legs inside the larval exoskeleton fit to the larval legs joint-to-joint. The adult emerges with stretched legs. During the molt, an imaginal leg must follow all the angles in exuvial joints. In turn, larval apodemes are withdrawn from imaginal legs. We visualized transient shapes of the imaginal legs by the instant fixation of insects at different moments of the molt, photographed isolated exuvial legs with the imaginal legs inside and then removed the exuvial sheath. Instant shapes of the imaginal tibia show sharp intrapodomere bends copying the angle in the larval femoro-tibial joint. The site of bending shifts distad during the molt. This is possible if the imaginal leg is pliable. The same problem of leg squeezing is also common in hemimetabolous insects as well as in other arthropods, whereas holometabolous insects overcome problems of a tight confinement either by using leg pliability in other ways but not squeezing (cyclorrhaphan flies, mosquitoes) or by pulling hardened legs out without change of their pupal zigzag configuration (moths, ants, honey bees). The pupal legs are not intended to grasp any external substrate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.