Abstract

Lefty polypeptides, novel members of the transforming growth factor-beta (TGF-beta) superfamily, are involved in the formation of embryonic lateral patterning. Members of the TGF-beta superfamily require processing for their activation, suggesting cleavage to be an essential step for lefty activation. Transfection of different cell lines with lefty resulted in expression of a 42-kDa protein, which was proteolytically processed to release two polypeptides of 34 and 28 kDa. Since members of the proprotein convertase (PC) family cleave different TGF-beta factors and are involved in the establishment of embryonic laterality, we studied their role in lefty processing. Cotransfection analysis showed that PC5A processed the lefty precursor to the 34-kDa form in vivo, whereas furin, PACE4, PC5B, and PC7 had a limited activity. None of these PCs showed activity in the processing of the lefty polypeptide to the 28-kDa lefty form. The mutation of the consensus sequences for PC cleavage in the lefty protein allowed the lefty cleavage sites to be identified. Mutations of the sequence RGKR to GGKG (amino acids 74-77) and of RHGR to GHGR (amino acids 132-135) prevented the proteolytic processing of the lefty precursor to the 34- and 28-kDa forms, respectively. To identify the biologically active form of lefty, we studied the effect of lefty treatment on pluripotent P19 cells. Lefty did not induce Smad2 or Smad5 phosphorylation, Smad2/Smad4 heterodimerization, or nuclear translocation of Smad2 or Smad4, but activated the MAPK pathway in a time- and dose-dependent fashion. Further analysis showed the 28-kDa (but not the 34-kDa) polypeptide to induce MAPK activity. Surprisingly, the 42-kDa lefty protein was also capable of inducing MAPK activity, indicating that the lefty precursor is biologically active. The data support a molecular model of processing as a mechanism for regulation of lefty signaling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.