Abstract
First-passage properties of continuous stochastic processes confined in a one-dimensional interval are well described. However, for jump processes (discrete random walks), the characterization of the corresponding observables remains elusive, despite their relevance in various contexts. Here we derive exact asymptotic expressions for the leftward, rightward, and complete exit-time distributions from the interval [0,x] for symmetric jump processes starting from x_{0}=0, in the large x and large time limit. We show that both the leftward probability F_{[under 0]̲,x}(n) to exit through 0 at step n and rightward probability F_{0,[under x]̲}(n) to exit through x at step n exhibit a universal behavior dictated by the large-distance decay of the jump distribution parametrized by the Levy exponent μ. In particular, we exhaustively describe the n≪(x/a_{μ})^{μ} and n≫(x/a_{μ})^{μ} limits and obtain explicit results in both regimes. Our results finally provide exact asymptotics for exit-time distributions of jump processes in regimes where continuous limits do not apply.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.