Abstract

Using a variable volume cell, we were able to crystallize 4He in aerogels at a constant temperature. The entire crystallization process was monitored visually owing to the transparency of the aerogel. Two different crystallization processes of 4He in aerogels were observed: creep at high temperatures and avalanche at low temperatures. In a 96 % porosity aerogel, we noticed that 4He remained liquid in some parts of the cell even though other parts of the aerogel were completely crystallized. Once such a situation was formed, the application of additional pressure did not further crystallize the liquid. This is presumably because a supply path of 4He atoms from the bulk crystal was blocked by the crystals in the aerogel. This leftover liquid, however, was found to begin to crystallize via avalanches when cooled below a particular temperature. If the crystallization pressure in aerogel is temperature independent at low temperatures as the bulk crystallization pressure, the crystallization by cooling is rather unusual. Possible explanations would be a decrease of the crystallization pressure in aerogel in the low temperature region, or the supersolidity of crystals in aerogel playing some role in mass transport.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.