Abstract

Recently, the use of natural products for the synthesis of carbon dots (CDs) has received much attention. Herein, leftover kiwi (Actinidia Deliciosa) fruit peels were successfully turned into beneficial fluorescent carbon dots (KN-CDs) via the hydrothermal-carbonization route. KN-CDs 1 and KN-CDs 2 were prepared without and with ammonium hydroxide, respectively. KN-CDs 1 and KN-CDs 2 were systematically characterized by various analytical techniques. Synthesized KN-CDs showed spherical-shaped morphology with narrow size distribution and excellent optical properties with excitation-independent behaviors. The quantum yields of KN-CDs 1 and KN-CDs 2 were calculated as 14 and 19%, respectively. Additionally, the KN-CDs possess excellent prolonging and photostability. Because of the excellent optical properties of KN-CDs, they were utilized as fluorescent sensors. The strong fluorescence of the KN-CDs was selectively quenched by Fe3+ ion, and quenching behavior showed a linear correlation with the concentrations of Fe3+ ion. KN-CDs 1 and KN-CDs 2 showed the detection of Fe3+ ions within the concentration range of 5–25 µM with the detection limit of 0.95 and 0.85 µM, respectively. Based on the turn-off sensing by the detection of Fe3+ ions, KN-CDs would be a promising candidate as a selective and sensitive fluorescent sensor.

Highlights

  • Carbon dots (CDs), defined as carbon-based nanomaterials with a size of

  • Scheme 1 shows an illustration of the procedure of KN-CDs synthesis from the leftover kiwi fruit peel

  • The prepared KN-CDs 1 and KN-CDs 2 were characterized by various techniques, such as X-ray diffraction (XRD), Raman, X-ray photoelectron spectroscopy (XPS), field-emission scanning electron microscopy (FESEM), and high-resolution transmission electron microscopy (HRTEM)

Read more

Summary

Introduction

Carbon dots (CDs), defined as carbon-based nanomaterials with a size of

Experimental Section
Results and Discussion
Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call