Abstract

BackgroundEarly detection of subclinical myocardial dysfunction in patients with diabetes mellitus (DM) is essential for recommending therapeutic interventions that can prevent or reverse heart failure, thereby improving the prognosis in such patients. This study aims to quantitatively evaluate left ventricular (LV) myocardial deformation and perfusion using cardiovascular magnetic resonance (CMR) imaging in patients with type 2 diabetes mellitus (T2DM), and to investigate the association between LV subclinical myocardial dysfunction and coronary microvascular perfusion.MethodsWe recruited 71 T2DM patients and 30 healthy individuals as controls who underwent CMR examination. The T2DM patients were subdivided into two groups, namely the newly diagnosed DM group (n = 31, patients with diabetes for ≤ 5 years) and longer-term DM group (n = 40, patients with diabetes > 5 years). LV deformation parameters, including global peak strain (PS), peak systolic strain rate, and peak diastolic strain rate (PSDR), and myocardial perfusion parameters such as upslope, time to maximum signal intensity (TTM), and max signal intensity (Max SI, were measured and compared among the three groups. Pearson’s correlation was used to evaluate the correlation between LV deformation and perfusion parameters.ResultsPooled data from T2DM patients showed a decrease in global longitudinal, circumferential, and radial PDSR compared to healthy individuals, apart from lower upslope. In addition, increased TTM and reduced Max SI were found in the longer-term diabetics compared to the normal subjects (p < 0.017 for all). Multivariable linear regression analysis showed that T2DM was independently associated with statistically significant CMR parameters, except for TTM (β = 0.137, p = 0.195). Further, longitudinal PDSR was significantly associated with upslope (r = − 0.346, p = 0.003) and TTM (r = 0.515, p < 0.001).ConclusionsOur results imply that a contrast-enhanced 3.0T CMR can detect subclinical myocardial dysfunction and impaired myocardial microvascular perfusion in the early stages of T2DM, and that the myocardial dysfunction is associated with impaired coronary microvascular perfusion.

Highlights

  • Detection of subclinical myocardial dysfunction in patients with diabetes mellitus (DM) is essential for recommending therapeutic interventions that can prevent or reverse heart failure, thereby improving the progno‐ sis in such patients

  • Our results imply that a contrast-enhanced 3.0T cardiovascular magnetic resonance (CMR) can detect subclinical myocardial dysfunction and impaired myocardial microvascular perfusion in the early stages of type 2 diabetes mellitus (T2DM), and that the myocardial dysfunction is associated with impaired coronary microvascular perfusion

  • A major cause of increased mortality in patients with DM is diabetic cardiomyopathy (DCM) [3, 4], which is defined as myocardial dysfunction that is independent of coronary artery disease (CAD) and hypertension and can lead to heart failure [4, 5]

Read more

Summary

Introduction

Detection of subclinical myocardial dysfunction in patients with diabetes mellitus (DM) is essential for recommending therapeutic interventions that can prevent or reverse heart failure, thereby improving the progno‐ sis in such patients. Early detection of myocardial dysfunction in patients with DM is essential for recommending therapeutic interventions that can prevent or reverse heart failure, as the severity of cardiac disease is a key indicator that determines prognosis. Even without clinically manifested heart disease, patients with type 2 diabetes mellitus (T2DM) have subtle changes in cardiac function, including left ventricular (LV) myocardial diastolic dysfunction and impaired myocardial perfusion [10,11,12,13]. With time, these subtle changes can progress to impaired systolic function or even clinical heart failure [14]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call