Abstract

We used segmental strain analysis to evaluate whether intrinsic (diet-induced obesity [DIO]) and extrinsic (unpredictable chronic mild stress [UCMS]) stressors can alter deformational patterns of the left ventricle. Six-week-old male C57BL/6J mice were randomized into the lean or obese group (n=24/group). Mice underwent 12 wk of DIO with a high-fat diet (HFD). At 18 wk, lean and obese mice were further randomized into UCMS and non-UCMS groups (UCMS, 7 h/d, 5 d/wk, for 8 wk). Echocardiography was performed at baseline (6 wk), post-HFD (18 wk) and post-UCMS (26 wk). Machine learning was applied to the DIO and UCMS groups. There was robust predictive accuracy (area under the receiver operating characteristic curve [AUC]=0.921) when comparing obese with lean mice, with radial strain changes in the lateral (-64%, p ≤ 0.001) and anterior free (-53%, p < 0.001) walls being most informative. The ability to predict mice that underwent UCMS, irrespective of diet, was assessed (AUC=0.886), revealing longitudinal strain rate of the anterior midwall and radial strain of the posterior septal wall as the top features. The wall segments indicate a predilection for changes in deformation patterns to the free wall (DIO) and septal wall (UCMS), indicating disease-specific alterations to the myocardium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call