Abstract
In this paper we introduce the notions of left (resp. right) Fredholm and left (resp. right) Browder linear relations. We construct a Kato-type decomposition of such linear relations. The results are then applied to give another decomposition of a left (resp. right) Browder linear relation T in a Banach space as an operator-like sum T = A + B, where A is an injective left (resp. a surjective right) Fredholm linear relation and B is a bounded finite rank operator with certain properties of commutativity. The converse results remain valid with certain conditions of commutativity. As a consequence, we infer the characterization of left (resp. right) Browder spectrum under finite rank operator.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.