Abstract

We study entanglement entropy of boundary states in a free bosonic conformal field theory. A boundary state can be thought of as composed of a particular combination of left and right-moving modes of the two-dimensional conformal field theory. We investigate the reduced density matrix obtained by tracing over the right-moving modes in various boundary states. We consider Dirichlet and Neumann boundary states of a free noncompact as well as a compact boson. The results for the entanglement entropy indicate that the reduced system can be viewed as a thermal CFT gas. Our findings are in agreement and generalize results in quantum mechanics and quantum field theory where coherent states can also be considered. In the compact case we verify that the entanglement entropy expressions are consistent with T-duality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.