Abstract

In a previous paper, the authors defined two binary term operations in orthomodular lattices such that an orthomodular lattice can be organized by means of them into a left residuated lattice. It is a natural question if these operations serve in this way also for more general lattices than the orthomodular ones. In our present paper, we involve two conditions formulated as simple identities in two variables under which this is really the case. Hence, we obtain a variety of lattices with a unary operation which contains exactly those lattices with a unary operation which can be converted into a left residuated lattice by use of the above mentioned operations. It turns out that every lattice in this variety is in fact a bounded one and the unary operation is a complementation. Finally, we use a similar technique by using simpler terms and identities motivated by Boolean algebras.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.