Abstract
Let $Q$ be an inverse semigroup. A subsemigroup $S$ of $Q$ is a left I-order in $Q$ and $Q$ is a semigroup of left I-quotients of $S$ if every element $qin Q$ can be written as $q=a^{-1}b$ for some $a,bin S$. If we insist on $a$ and $b$ being $er$-related in $Q$, then we say that $S$ is straight in $Q$. We characterize semigroups which are left I-quotients of left regular bands of right cancellative monoids with certain conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.