Abstract

One theory of the origins of reading disorders (i.e., dyslexia) is a language network which cannot effectively 'entrain' to speech, with cascading effects on the development of phonological skills. Low-gamma (low-γ, 30-45 Hz) neural activity, particularly in the left hemisphere, is thought to correspond to tracking at phonemic rates in speech. The main goals of the current study were to investigate temporal low-γ band-power during rest in a sample of children and adolescents with and without reading disorder (RD). Using a Bayesian statistical approach to analyze the power spectral density of EEG data, we examined whether (1) resting-state temporal low-γ power was attenuated in the left temporal region in RD; (2) low-γ power covaried with individual reading performance; (3) low-γ temporal lateralization was atypical in RD. Contrary to our expectations, results did not support the hypothesized effects of RD status and poor decoding ability on left hemisphere low-γ power or lateralization: post-hoc tests revealed that the lack of atypicality in the RD group was not due to the inclusion of those with comorbid attentional deficits. However, post-hoc tests also revealed a specific left-dominance for low-γ rhythms in children with reading deficits only, when participants with comorbid attentional deficits were excluded. We also observed an inverse relationship between decoding and left-lateralization in the controls, such that those with better decoding skills were less likely to show left-lateralization. We discuss these unexpected findings in the context of prior theoretical frameworks on temporal sampling. These results may reflect the importance of real-time language processing to evoke gamma rhythms in the phonemic range during childhood and adolescence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.