Abstract

ABSTRACTFactorization in algebra is an important problem. In this paper, we first obtain a unique factorization in free Nijenhuis algebras. By using of this unique factorization, we then define a coproduct and a left counital bialgebraic structure on a free Nijenhuis algebra. Finally, we prove that this left counital bialgebra is connected and hence obtain a left counital Hopf algebra on a free Nijenhuis algebra.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.