Abstract
Abstract Let $W$ be an irreducible complex reflection group acting on its reflection representation $V$. We consider the doubly graded action of $W$ on the exterior algebra $\wedge (V \oplus V^*)$ as well as its quotient $DR_W:= \wedge (V \oplus V^*)/ \langle \wedge (V \oplus V^*)^{W}_+ \rangle $ by the ideal generated by its homogeneous $W$-invariants with vanishing constant term. We describe the bigraded isomorphism type of $DR_W$; when $W = {{\mathfrak{S}}}_n$ is the symmetric group, the answer is a difference of Kronecker products of hook-shaped ${{\mathfrak{S}}}_n$-modules. We relate the Hilbert series of $DR_W$ to the (type A) Catalan and Narayana numbers and describe a standard monomial basis of $DR_W$ using a variant of Motzkin paths. Our methods are type-uniform and involve a Lefschetz-like theory, which applies to the exterior algebra $\wedge (V \oplus V^*)$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.