Abstract
The mammalian airways are lined by a continuous epithelial layer that is maintained by diverse populations of resident multipotent stem cells. These stem cells are responsible for replenishing the epithelium both at homeostasis and following injury, making them promising targets for stem cell and genetic-based therapies for a variety of respiratory diseases. However, the mechanisms that regulate when and how these stem cells proliferate, migrate, and differentiate remains incompletely understood. Here, we find that the high mobility group (HMG) domain transcription factor Lef-1 regulates proliferation and differentiation of mouse tracheal basal cells. We demonstrate that conditional deletion of Lef-1 stalls basal cell proliferation at the G1/S transition of the cell cycle, and that Lef-1 knockout cells are unable to maintain luminal tracheal cell types in long-term air-liquid interface culture. RNA sequencing analysis revealed that Lef-1 knockout (Lef-1KO) results in downregulation of key DNA damage response and cell cycle progression genes, including the kinase Chek1. Furthermore, chemical inhibition of Chek1 is sufficient to stall basal cell self-renewal in a similar fashion as Lef-1 deletion. Notably, the cell cycle block imposed by Lef-1KO in vitro is transient and basal cells eventually compensate to proliferate normally in a Chek1-independent manner. Finally, Lef-1KO cells were unable to fully regenerate tracheal epithelium following injury in vivo. These findings reveal that Lef-1 is essential for proper basal cell function. Thus, modulating Lef-1 function in airway basal cells may have applications in regenerative medicine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.